在Virtual.lab的点声源定义中,是否输入的是不同频率下的声源声功率级?
在詹福良老师的书中用声线法计算小车车内声场时,在P.472定义点声源时,用的是声功率级,可是单位是“W”(见下图),该如何解释?
另外,仿真结果中100Hz时声场声压级达140dB(见书中P.475图7.20),该怎样解释?
若声源声功率与频率有关时,应该输入不同频率对应的声功率!
You have the choice between a Constant (dB RMS) value and a Frequency Dependent value. The constant value can be defined in dB(RMS) in the fields from the combo boxes. The frequency dependent value is defined using an edited load function, in the units as indicated in its GUI. Upon selecting this option, a selection field will get activated. You can either create a new function or refer to an existing one. Refer to the Edited Load Function Set topic for more details.
页:
[1]