声振论坛

 找回密码
 我要加入

QQ登录

只需一步,快速开始

查看: 2179|回复: 2

[计算数学] 令人困惑的函数求导问题

[复制链接]
发表于 2014-5-8 15:49 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?我要加入

x
本帖最后由 xueliang 于 2014-5-8 15:52 编辑

函数定义如下:
\mathbf{\Omega}(w)=  \frac{1}{2}\sum_{e\in \cal{E}}\sum_{u,v\in \cal{V}} \frac{w(e)H(u,e)H(v,e)}{\delta(e)} \times {\left(\frac{f(u)}{\sqrt{d(u)}} - \frac{f(v)}{\sqrt{d(v)}}\right)^2}

其中所有的变量都为正值. f, w,\delta(e),d为向量,H为矩阵。

对上式化简,应该可以得到\mathbf{\Omega}(w) = w^T\sigma_1的形式。

根据稀疏图理论,做如下变换\mathbf{\Theta} = \mathbf{D}_v^{-\frac{1}{2}}\mathbf{H}\mathbf{W}\mathbf{D}_{e}^{-1}\mathbf{H}^{T}\mathbf{D}_v^{-\frac{1}{2}},
以及\mathbf{\Delta}= \mathbf{I} - \mathbf{\Theta}

则有\Omega(w) = f^T\mathbf{\Delta}f

其中,W,\mathbf{D}_{e},\mathbf{D}_v为w,\delta(e),d 生成的对角矩阵。
两种计算方法我用matlab验证过都是对的。


显然,\mathbf{\Theta}里面都是正值,应该有:


\Omega(w) = f^T(\mathbf{I} - \mathbf{\Theta})f = f^Tf - w^T\sigma_2
而且, \sigma_2也是正向量。


疑惑产生了,如果\mathbf{\Omega}(w)对w求导,结果应该是一个正向量\sigma_1,还是-\sigma_2?为什么正负号都不对呢?



回复
分享到:

使用道具 举报

发表于 2014-5-17 07:04 | 显示全部楼层
你能确定\sigma_1和-\sigma_2是常数吗?

我怎么觉得他们和w有关呢
发表于 2014-10-9 21:15 | 显示全部楼层
学习了学习了
您需要登录后才可以回帖 登录 | 我要加入

本版积分规则

QQ|小黑屋|Archiver|手机版|联系我们|声振论坛

GMT+8, 2025-1-24 20:00 , Processed in 0.080963 second(s), 18 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表