声振论坛

 找回密码
 我要加入

QQ登录

只需一步,快速开始

查看: 2895|回复: 0

[非线性振动] 非线性振动调节等效阻尼到零的情况下

[复制链接]
发表于 2016-5-13 17:51 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?我要加入

x
本帖最后由 hcharlie 于 2016-5-13 19:43 编辑

  自激振动非线性自治系统具有等效负阻尼时,调节等效阻尼到零的情况下所存在的定常周期振动。自治系统是指运动微分方程中不显含时间 t的系统。在线性自治系统中出现的运动形式只有三种:发散型、保守型和衰减型。发散型对应于负阻尼情形,保守型对应于无阻尼情形,衰减型对应于正阻尼情形。只在保守情况下,系统的运动才是谐和的,按能量大小,形成一族振幅连续分布的(即非孤立的)周期运动。非线性自治系统,除了在保守情况仍有非孤立的周期运动外,在非保守情况也可能出现孤立的周期运动。当阻尼为非线性时,阻尼系数随运动而变化,因而有可能在小振幅下,等效阻尼是负的;在大振幅下,等效阻尼是正的;在某个中间的振幅,相应的等效阻尼为零,与此相应,存在一个定常周期振动,称为自激振动,简称自振。这种振动是孤立的,其幅值变化和周期仅取决于系统参量,在一定范围内与初始状态无关。弱非线性系统的自振是接近于谐和的;强非线性系统的自振则是远离谐和的。后者在振动中,缓慢地积累能量的过程与几乎是瞬时地释放能量的过程在交替进行,因而形象地称为张弛振动。振动的图像见图2,图中x为位移,t为时间。

                               
登录/注册后可看大图

  跳跃现象非线性系统的振幅 (A)对谐和外扰频率(ω)的曲线可有几个分支,缓慢地变动扰动频率,可在某些频率出现振幅的突变现象。和线性系统不同,描述非线性系统的微分方程,在同一组参量下可能有多个周期解;而只有那些满足稳定性条件的解,才对应有物理上可实现的运动。在非线性系统中,运动的多样性和稳定性不可忽视。具有非线性恢复力的系统在谐和外扰作用下的定常响应曲线,往往在某些频带上有几个分支(图3);因而对应于同一个扰频,可以有几个不同幅值的稳定的定常受迫振动。若扰力的幅值保持不变,而其频率缓慢地改变,则当扰频变到某些值,例如图3中的ω1与ω2处,两个定态振动之间就发生跳跃现象:当扰频单调上升至ω2处时,从3跳到4;当扰频单调下降到ω1处时,从6跳到2。因此,跳跃现象又称振动回滞。如保持扰频不变,而缓慢地改变扰力幅度,也可能出现类似的跳跃现象。

                               
登录/注册后可看大图

  亚谐共振干扰力作用于非线性系统所激发的频率比干扰频率低整数倍的大幅度振动。固有频率为ωn≈ω/n(n为正整数)。对线性系统,在频率为ω的谐和外扰作用下,只能产生频率为ω的定常受迫振动。但具有非线性恢复力且固有频率接近于ωn的系统,在受到频率为ω的谐和外扰时,有可能产生频率为ω/n的定常受迫振动,称为亚谐共振或分频共振。理论和实验研究证明,亚谐共振的出现,不仅依赖于系统的参量,而且还依赖于初始条件。自振系统在谐和外扰作用下,也可能产生亚谐共振。亚谐共振可解释为:由于外扰对自由振动高谐分量所作的功而维持的受迫振动。
  同步现象干扰力频率接近自振系统固有频率到一定程度时,所激起的振动中只包含干扰力频率而自振频率被俘获的现象。17世纪,C.惠更斯已观察到:快慢稍微不同的两只时钟,挂在同一壁板上会保持同步计时。在自振频率为ω0的电子管振荡器中,设在栅极回路加上频率为ω的激励,则在ω接近ω0时,按线性理论,输出中必然有拍频为|ω-ω0|的信号。实际上,当|ω-ω0|小于某个阈限时,拍频就突然消失,只剩下频率为ω的输出,即自振和受迫振动发生同步,或者说自振频率被扰频所俘获,因而这一现象也称为频率俘获。同步现象已被有效地利用于振荡器的稳频以及振动机械的同步激振。同步现象不仅出现在扰频和自振频率相近的区域,在一定条件下,也可出现在扰频的整分数倍和自振频率相近的区域,这种现象称为亚谐同步。
  参变激发周期地改变系统的某个参量而激起系统的大幅振动。例如单摆支点在作铅垂振动时,摆的下铅垂平衡位置在一定条件下会丧失稳定性。当系统的固有频率等于或接近参量变化频率的一半时,参变激发现象最易产生。
  参变镇定参量的周期变化使系统稳定的现象。例如倒立摆支点沿铅垂方向作适当振动时,摆的上铅垂平衡位置有可能变成稳定的。对于非线性系统,叠加原理不再适用,因而非线性问题没有一般的解法。通常只能用一些特殊方法来探索非线性系统的重要运动,这些方法又分定性和定量两类,两者相辅相成。

回复
分享到:

使用道具 举报

您需要登录后才可以回帖 登录 | 我要加入

本版积分规则

QQ|小黑屋|Archiver|手机版|联系我们|声振论坛

GMT+8, 2024-12-23 19:51 , Processed in 0.056876 second(s), 18 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表