声振论坛

 找回密码
 我要加入

QQ登录

只需一步,快速开始

查看: 2193|回复: 1

[FFT] 关于FFT的使用问题(理解频率分辨率、补零问题)

[复制链接]
发表于 2018-6-27 16:32 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?我要加入

x
  1、Matlab中FFT的调用方法
  X=FFT(x);
  X=FFT(x,N);
  x=IFFT(X);
  x=IFFT(X,N)

  用MATLAB进行谱分析时注意:
  (1)函数FFT返回值的数据结构具有对称性

  调用方法:
  N=8;
  n=0:N-1;
  xn=[4 3 2 6 7 8 9 0];
  Xk=fft(xn)

  运行结果:
  Xk =
   39.0000
  -10.7782 + 6.2929i
                  0 - 5.0000i
      4.7782 - 7.7071i
      5.0000
      4.7782 + 7.7071i
                  0 + 5.0000i
  -10.7782 - 6.2929i

  Xk与xn的维数相同,共有8个元素。Xk的第一个数对应于直流分量,即频率值为0。

  (2)做FFT分析时,幅值大小与FFT选择的点数有关,但不影响分析结果。在IFFT时已经做了处理。要得到真实的振幅值的大小,只要将得到的变换后结果乘以2除以N即可。

  2、FFT应用举例
  例1:x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t)。采样频率fs=100Hz,分别绘制N=128、1024点幅频图。

  代码如下:
  clf;
  fs=100;N=128;
  %采样频率和数据点数
  n=0:N-1;t=n/fs;
  %时间序列
  x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t);
  %信号
  y=fft(x,N);
  %对信号进行快速Fourier变换
  mag=abs(y);
  %求得Fourier变换后的振幅
  f=n*fs/N;
  %频率序列
  subplot(2,2,1),plot(f,mag);
  %绘出随频率变化的振幅
  xlabel('频率/Hz');
  ylabel('振幅');title('N=128');
  grid on;
  subplot(2,2,2);
  plot(f(1:N/2),mag(1:N/2));
  %绘出Nyquist频率之前随频率变化的振幅
  xlabel('频率/Hz');
  ylabel('振幅');title('N=128');
  grid on;
  %对信号采样数据为1024点的处理
  fs=100;
  N=1024;n=0:N-1;t=n/fs;
  x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t);
  %信号
  y=fft(x,N);
  %对信号进行快速Fourier变换
  mag=abs(y);
  %求取Fourier变换的振幅
  f=n*fs/N;
  subplot(2,2,3),plot(f,mag);
  %绘出随频率变化的振幅
  xlabel('频率/Hz');
  ylabel('振幅');title('N=1024');
  grid on;
  subplot(2,2,4)
  plot(f(1:N/2),mag(1:N/2));
  %绘出Nyquist频率之前随频率变化的振幅
  xlabel('频率/Hz');
  ylabel('振幅');title('N=1024');
  grid on;

  运行结果:
1.png
  fs=100Hz,Nyquist频率为fs/2=50Hz。整个频谱图是以Nyquist频率为对称轴的。并且可以明显识别出信号中含有两种频率成分:15Hz和40Hz。由此可以知道FFT变换数据的对称性。因此用FFT对信号做谱分析,只需考察0~Nyquist频率范围内的福频特性。

  若没有给出采样频率和采样间隔,则分析通常对归一化频率0~1进行。另外,振幅的大小与所用采样点数有关,采用128点和1024点的相同频率的振幅是有不同的表现值,但在同一幅图中,40Hz与15Hz振动幅值之比均为4:1,与真实振幅0.5:2是一致的。为了与真实振幅对应,需要将变换后结果乘以2除以N。


  例2:x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t),fs=100Hz,绘制:
  (1) 数据个数N=32,FFT所用的采样点数NFFT=32;
  (2) N=32,NFFT=128;
  (3) N=136,NFFT=128;
  (4) N=136,NFFT=512。

  代码如下:
  clf;fs=100;
  %采样频率
  Ndata=32;
  %数据长度
  N=32;
  %FFT的数据长度
  n=0:Ndata-1;t=n/fs;
  %数据对应的时间序列
  x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t);
  %时间域信号
  y=fft(x,N);
  %信号的Fourier变换
  mag=abs(y);
  %求取振幅
  f=(0:N-1)*fs/N;
  %真实频率
  subplot(2,2,1);
  plot(f(1:N/2),mag(1:N/2)*2/N);
  %绘出Nyquist频率之前的振幅
  xlabel('频率/Hz');
  ylabel('振幅');
  title('Ndata=32 Nfft=32');
  grid on;
  Ndata=32;
  %数据个数
  N=128;
  %FFT采用的数据长度
  n=0:Ndata-1;t=n/fs;
  %时间序列
  x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t);
  y=fft(x,N);
  mag=abs(y);
  f=(0:N-1)*fs/N;
  %真实频率
  subplot(2,2,2);
  plot(f(1:N/2),mag(1:N/2)*2/N);
  %绘出Nyquist频率之前的振幅
  xlabel('频率/Hz');
  ylabel('振幅');
  title('Ndata=32 Nfft=128');
  grid on;
  Ndata=136;
  %数据个数
  N=128;
  %FFT采用的数据个数
  n=0:Ndata-1;t=n/fs;
  %时间序列
  x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t);
  y=fft(x,N);
  mag=abs(y);
  f=(0:N-1)*fs/N;
  %真实频率
  subplot(2,2,3);
  plot(f(1:N/2),mag(1:N/2)*2/N);
  %绘出Nyquist频率之前的振幅
  xlabel('频率/Hz');
  ylabel('振幅');
  title('Ndata=136 Nfft=128');
  grid on;
  Ndata=136;
  %数据个数
  N=512;
  %FFT所用的数据个数
  n=0:Ndata-1;t=n/fs;
  %时间序列
  x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t);
  y=fft(x,N);
  mag=abs(y);
  f=(0:N-1)*fs/N;
  %真实频率
  subplot(2,2,4);
  plot(f(1:N/2),mag(1:N/2)*2/N);
  %绘出Nyquist频率之前的振幅
  xlabel('频率/Hz');
  ylabel('振幅');
  title('Ndata=136 Nfft=512');
  grid on;

  运行结果:
2.png
  结论:
  (1) 当数据个数和FFT采用的数据个数均为32时,频率分辨率较低,但没有由于添零而导致的其他频率成分。
  (2) 由于在时间域内信号加零,致使振幅谱中出现很多其他成分,这是加零造成的。其振幅由于加了多个零而明显减小。
  (3) FFT程序将数据截断,这时分辨率较高。
  (4) 也是在数据的末尾补零,但由于含有信号的数据个数足够多,FFT振幅谱也基本不受影响。

  对信号进行频谱分析时,数据样本应有足够的长度,一般FFT程序中所用数据点数与原含有信号数据点数相同,这样的频谱图具有较高的质量,可减小因补零或截断而产生的影响。

  例3:x=cos(2*pi*0.24*n)+cos(2*pi*0.26*n)
  代码参考上述两个例子,运行结果如下:
3.png
  结论:
  (1) 数据点过少,几乎无法看出有关信号频谱的详细信息;
  (2) 中间的图是将x(n)补90个零,幅度频谱的数据相当密,称为高密度频谱图。但从图中很难看出信号的频谱成分。
  (3) 信号的有效数据很长,可以清楚地看出信号的频率成分,一个是0.24Hz,一个是0.26Hz,称为高分辨率频谱。

  可见,采样数据过少,运用FFT变换不能分辨出其中的频率成分。添加零后可增加频谱中的数据个数,谱的密度增高了,但仍不能分辨其中的频率成分,即谱的分辨率没有提高。只有数据点数足够多时才能分辨其中的频率成分。

  本文摘录自万永革主编的《数字信号处理的MATLAB实现》

回复
分享到:

使用道具 举报

发表于 2018-6-27 17:08 | 显示全部楼层
Resolution=fs/N, so larger N means better frequency resolution.
回复 支持 1 反对 0

使用道具 举报

您需要登录后才可以回帖 登录 | 我要加入

本版积分规则

QQ|小黑屋|Archiver|手机版|联系我们|声振论坛

GMT+8, 2024-12-23 07:52 , Processed in 0.070897 second(s), 21 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表