声振论坛

 找回密码
 我要加入

QQ登录

只需一步,快速开始

查看: 2297|回复: 0

[其他相关] 约翰·伯努利是如何“开摆”的?

[复制链接]
发表于 2022-7-7 14:51 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?我要加入

x
小时候喜欢坐过山车,每次坐的时候总想着能不能再快一点, 要是更快从最高处滑下来就更爽了。后来发现早在17世纪,约翰·伯努利(雅各比·伯努利的弟弟,欧拉的老师)就曾研究过类似问题。他在1696年6月号的《教师学报》上提出向全欧洲数学家挑战的题目:设不在同一铅垂线上的两点A与B,使一质点只在重力的影响下从A滑向B,不计摩擦和空气阻力,哪条途径所需时间最短呢?
1.png
直觉上或许会认为直线段AB是耗时最短的路径,但实际上距离确实是最短耗时却不一定;而且似乎让曲线前半段更陡一点,积攒一点“冲劲”会有利于更快滑落,那如何在“更短”和“更陡”之间寻找平衡呢?

我们以A点为坐标原点,设曲线为y = y(x),则在机械能守恒下速度可表示为
2.png
其中g是重力加速度,这里我们再设s 表示曲线弧长,则由 3.png 知:
4.png
总时间则为:
5.png
结合边界条件 6.png

问题转化为求y(x) 的具体形式使上式取最小值,是个泛函的极值问题。

泛函取极值的必要条件是变分为0,即
7.png
这里不直接代入欧拉-拉格朗日方程,而是用变分法重新推导出来,记
8.png
则:
9.png
其中,积分第二项由变分的运算性质结合分部积分:
10.png
由固定端点的变分为0,则:
11.png
极值条件变为:
12.png
由于变分 13.png 的任意性,则要求:
14.png
15.png
伽利略在《论两种新科学》给出的答案是圆弧,而现在利用我们小大学二年级学过的变分法很容易就知道圆弧是错误的,正确答案是摆线(旋轮线),曲线参数方程可写为:
16.png
其中r 是滚轮的半径,θ 是滚轮滚过的角度。
17.png
而约翰·伯努利本人的解法更惊艳,他基于费马原理:一束光从A点传播到B点总是沿着尽可能快的路径(唯一一条)。因此原问题可以想象为一束光在不同折射率的介质中传播,介质再连续的变化,即光以不同的速度连续地沿着滑道向下走,每个瞬间都遵循可由费马原理导出的斯涅耳定律(光的折射定律):
18.png
19.png
约翰·伯努利一眼看出上式就是摆线,但是对于我们普通人来说却并不显然,这里我们利用速度瞬心C得到CP总是垂直于速度方向,即轨迹切线垂直于CP,又结合图中的角度关系可以获得几何关系
20.png
其中D是滚轮的直径,便可以轻易看出导出的方程对应的轨迹是摆线,对应的常数即为 21.png
22.png
摆线在生活中其实也非常常见,除了过山车的设计采用外,我国古代建筑的屋顶形状,从侧面看也近似于摆线,除了线条柔和更加优雅外,在遇到大暴雨时也能更快排水减轻屋顶负担,在清理时也更便于冲刷。
23.png
此外摆线还具有等时性,从不同高度下落至最低点所需的时间是一样,即无论物体在曲线的哪个位置上,它们都会经过相同的时间滑落到水平位置,利用这个性质我们可以制作出不受摆幅影响的摆钟。
24.gif
以后开摆的时候别躺平不动了,还是多想想摆线的性质吧。

参考文献
1、梁昆淼, 俞超, 马光群修订. 力学.下册,理论力学[M]. 高等教育出版社, 1995.

2、 https://www.bilibili.com/video/BV18s411t7mD?spm_id_from=333.880&vd_source=6fd5e3c1d8f12a06c697365e8e7b8aae

3、 https://baijiahao.baidu.com/s?id ... r=spider&for=pc

4、https://baike.baidu.com/item/%E6 ... &fromid=8064682

回复
分享到:

使用道具 举报

您需要登录后才可以回帖 登录 | 我要加入

本版积分规则

QQ|小黑屋|Archiver|手机版|联系我们|声振论坛

GMT+8, 2024-12-23 06:09 , Processed in 0.059278 second(s), 21 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表