声振论坛

 找回密码
 我要加入

QQ登录

只需一步,快速开始

查看: 6771|回复: 9

[结构力学] 急问一个小问题:模态坐标有单位吗?还是振型函数有单位?

[复制链接]
发表于 2007-3-30 10:27 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?我要加入

x
如题
回复
分享到:

使用道具 举报

发表于 2007-3-30 10:37 | 显示全部楼层
我认为模态坐标有单位,应该是长度单位。

振型向量是一个相对量,应该是系数函数,应该没有单位。

评分

1

查看全部评分

 楼主| 发表于 2007-3-30 10:39 | 显示全部楼层
我也这样认为,非常感谢你的及时回答
发表于 2007-3-30 11:53 | 显示全部楼层
.
   模态坐标应该没有单位,因为模态坐标是以振型为基础的,而振型往往都是归一化处理的形式,振型里不仅仅有线位移,还可以有角位移,模态是标志系统共振的振动形状,模态坐标是将实际空间的结构几何实际空间,为了得到解耦的特点,转化到抽象的模态空间,实际空间坐标有物理含义,抽象模态空间没有具体的物理含义,仅仅为了计算分析方便... ..

评分

1

查看全部评分

发表于 2007-3-30 15:14 | 显示全部楼层
我认为没有
发表于 2007-3-30 16:48 | 显示全部楼层
在模态分析中可以运用振型分解法,将运动微分方程的位移变量由物理坐标转换为模态坐标。这样的坐标变换需要利用振型矩阵,而振型矩阵就是由这些振形向量所组成。

这里的坐标变换是正交变换。在变换过程中,刚度矩阵,质量矩阵,激振力向量以及坐标向量都要用到振型矩阵来转换。转换前后,这些矩阵物理量纲都不发生变化,还是保持原来的量纲。

由此可见,振型矩阵是无量纲系数矩阵,所以振型向量也是无量钢的。

评分

2

查看全部评分

发表于 2009-3-18 22:10 | 显示全部楼层
有确定的回复吗?
发表于 2009-3-19 20:04 | 显示全部楼层
欧阳和 wanyeqing的说法都是正确的.
发表于 2009-4-14 14:13 | 显示全部楼层

参考

1.模态坐标是有单位的:
        模态坐标的作用就是使原本含有耦合项的M,K在模态坐标下解偶,就是对角化,M,K只是作用形式变了,但是其本质并未变,就如描述一个物体的运动在不同坐标系下有不同的形式,但是就像坐标是用来描述运动的,那么肯定就应该有单位,比如描述一个缸体的平面运动就要有x,y,theta三个坐标,而且单位必须清楚否则无法说明运动的性质
        2.模态也就是振型是没有单位的
        振型是一个相对的含义,振型也就是运动方程的特征向量,有线性代数可知:(1,2)和(2,4)同时一个特征向量,这就是相对性或者说相似性的道理。
        从另外一个角度来理解,振型说白了就是振动的形状,一个边长为10的等边三角形和一个边长为100的等边三角形,你能说他们的形状不同吗?
        不知道我这样解释你满意否?
        可以交流:623682629
发表于 2020-1-6 19:15 | 显示全部楼层
模态分析的目的是为了简化分析。
原坐标下的运动微分方程可能是多自由度的的方程组,不容易直接分析。
经过按振型的坐标变换,可以将这些方程组转变为一个个独立的单自由度微分方程,这样就容易分析了。
计算出结果后再带回坐标变换方程,即可求得原方程解答。
您需要登录后才可以回帖 登录 | 我要加入

本版积分规则

QQ|小黑屋|Archiver|手机版|联系我们|声振论坛

GMT+8, 2024-12-23 11:40 , Processed in 0.054987 second(s), 19 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表