声振论坛

 找回密码
 我要加入

QQ登录

只需一步,快速开始

查看: 1409|回复: 5

[编程技巧] 关于小波神经网络故障诊断程序错误在哪里?

[复制链接]
发表于 2008-5-5 10:13 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?我要加入

x
clc
clear
%step 1=========================
%定义输入样本;
P1=[0.251 0.503 0.952 1.335
0.724 0.692 0.584 0.448
2.002 1.964 1.812 1.613
1.735 1.684 1.513 1.289
3.287 3.225 3.025 2.746
0.243 0.495 0.901 1.337
0.703 0.661 0.570 0.433
1.983 1.924 1.863 1.671
1.659 1.588 1.458 1.269
3.277 3.211 2.992 2.703
0.253 0.501 0.941 1.310
0.872 0.843 0.727 0.576
2.032 1.993 1.853 1.659
1.400 1.362 1.211 1.019
3.268 3.202 2.983 2.690
0.247 0.500 0.891 1.291
0.726 0.667 0.607 0.390
1.891 1.813 1.776 1.510
1.237 1.186 1.106 1.005
3.255 3.216 3.105 2.912
0.262 0.511 0.973 1.359
0.697 0.664 0.575 0.412
1.781 1.743 1.612 1.449
1.125 1.081 1.031 1.982
3.303 3.254 3.048 2.759
];
%归一化;
tt=max(P1');
for i=1:25
P(i,:)=P1(i,:)/tt(i);
end
mubiao1=[0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1
0 0 1 0
0 0 1 0
0 0 1 0
0 0 1 0
0 0 1 0
0 0 1 1
0 0 1 1
0 0 1 1
0 0 1 1
0 0 1 1
0 1 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 1 0 1
0 1 0 1
0 1 0 1
0 1 0 1
0 1 0 1
];
aerfa=1;eta=1;
%初始化连接权 wjh(输出层和隐层的连接权);whi(隐层和输出层的连接权);
%假设小波函数节点数为:H 个;样本数为 P;
%输出节点数为:J 个;输入节点数为:I 个;
H=10;%隐层节点数;
A=size(mubiao1);B=A(1);%样本数;
I1=size(P1);I=I1(2);%输入节点数;
J1=size(mubiao1);J=J1(2);%输出节点数; %初始化小波参数
b=0.9*rand(H,1);
a=rand(H,1);
%初始化权系数;
whi=rand(I,H);wjh=rand(H,J);
%阈值初始化;
b1=rand(H,1);
b2=rand(J,1);p=1;%将 p 初始化;
%保存的误差;
Err_NetOut=[];ppp=0;
flag=1;count=0;%count 为迭代的次数;
while flag>0
flag=0;
x=P(p,:);
mubiao=mubiao1(p,:);
%step 2=================================
xhp1=0;
for h=1:H
for i=1:I
xhp1=xhp1+whi(i,h)*x(i);
end
ixhp(h)=xhp1+b1(h);
xhp1=0;
end
for h=1:H
oxhp(h)=fai((ixhp(h)-b(h))/a(h));
end
%step 3====================================
ixjp1=0;
for j=1:J
for h=1:H
ixjp1=ixjp1+wjh(h,j)*oxhp(h);
end
ixjp(j)=ixjp1+b2(j);
ixjp1=0;
end
oxjp=[ixjp(1) ixjp(2) ixjp(3) ixjp(4)];

%step 6==保存每次误差=====
wuchayy=abs(oxjp-mubiao)/mubiao;
E_x=1/2*sumsqr(x);
Err_NetOut=[Err_NetOut wuchayy];%保存每次的误差;
Err_rate=Err_NetOut/E_x;
%Err_rate
%oxjp
%求 detaj ,detab2==================================
for j=1:J
detaj(j)=-(oxjp(j)-mubiao(j))*oxjp(j)*(1-oxjp(j));
end
for j=1:J
for h=1:H
detawjh(h,j)=eta*detaj(j)*oxhp(h);
end
end
detab2=eta*detaj;
%求 detah, detawhi detab1 detab detaa;========================
sum=0;
for h=1:H
for j=1:J
sum=detaj(j)*wjh(h,j)*diffai((ixhp(h)-b(h))/a(h))/a(h)+sum;
end
detah(h)=sum;
sum=0;
end
for h=1:H
for i=1:I
detawhi(i,h)=eta*detah(h)*x(i);
end
end
detab1=eta*detah;
detab=-eta*detah;
for h=1:H
detaa(h)=-eta*detah(h)*((ixhp(h)-b(h))/a(h));
end
%引入动量因子 aerfa,修正各个系数=========================
wjh=wjh+1*detawjh;
whi=whi+1*detawhi;
a=a+1*detaa';
b=b+1*detab';
b1=b1+1*detab1';
b2=b2+1*detab2';

%============================================
%判断所有的样本是否计算完=============================
if p==B
count=count+1;
ppp=ppp+1;
error=0;
for i=1:length(Err_NetOut)
error=error+Err_NetOut(i);
end
wuchaquxian(ppp)=error;%记入个次误差;
Err_NetOut=[];
if (error<0.5|count>100)
disp('程序结束');
else
p=1;
flag=flag+1;
end
%disp('第一次训练完毕');
else
p=p+1;%计算下一组样本;
flag=flag+1;
end
end

%%=================================================================
%将训练好的网络用于故障诊断
p_test1=[0.254 0.491 0.912 1.383
         0.252 0.491 0.913 1.383
         0.253 0.491 0.914 1.383
         0.254 0.491 0.912 1.383
         0.254 0.491 0.912 1.383
         0.776 0.652 0.593 0.474
         0.776 0.651 0.590 0.473
         0.775 0.651 0.592 0.471
         0.775 0.651 0.592 0.471
         2.003 1.938 1.807 1.660
         1.981 1.922 1.869 1.670
         1.659 1.588 1.458 1.269
         1.606 1.551 1.482 1.331
         1.400 1.362 1.211 1.019
         3.313 3.264 3.148 2.957
         3.277 3.211 2.992 2.703
         3.263 3.212 3.038 3.818];
kkk=max(p_test1');
for i=1:17
p_test(i,:)=p_test1(i,:)/kkk(i);
end
%===========================================
ll=size(p_test);
for p=1:ll(1);
x=p_test(p,:);
%step 2=================================
xhp1=0;
for h=1:H
for i=1:I
xhp1=xhp1+whi(i,h)*x(i);
end
ixhp(h)=xhp1+b1(h);
end
for h=1:H
oxhp(h)=fai((ixhp(h)-b(h))/a(h));
end
%step 3====================================
ixjp1=0;
for j=1:J
for h=1:H
ixjp1=ixjp1+wjh(h,j)*oxhp(h);
end
ixjp(j)=ixjp1+b2(j);

end
oxjp=[ixjp(1) ixjp(2) ixjp(3) ixjp(4)];

yuce(p,:)=oxjp;
end
disp('诊断结果');
disp(yuce);

p=1:ppp;
wuchaquxian
xlabel('迭代次数');
ylabel('误差');
plot(p,wuchaquxian)
%fai和diffai 的函数调用如下:
function y=diffai(t);
y = -1.75*sin(1.75*t).*exp(-(t.^2)/2)-t* cos(1.75*t).*exp(-(t.^2)/2);
function y=fai(t);
y = exp(-(t.^2)/2) * cos(1.75*t);

[ 本帖最后由 eight 于 2008-5-5 10:22 编辑 ]
回复
分享到:

使用道具 举报

发表于 2008-5-5 10:23 | 显示全部楼层
原帖由 yinyubo393 于 2008-5-5 10:13 发表
clc
clear
%step 1=========================
%定义输入样本;
P1=[0.251 0.503 0.952 1.335
0.724 0.692 0.584 0.448
2.002 1.964 1.812 1.613
1.735 1.684 1.513 1.289
3.287 3.225 3.025 2.746
0.243 0. ...
新手发帖前请先阅读置顶的会员守则!什么错误都不说,把代码一摆就完事的做法本论坛不欢迎
发表于 2008-5-5 10:27 | 显示全部楼层
原帖由 yinyubo393 于 2008-5-5 10:13 发表
clc
clear
%step 1=========================
%定义输入样本;
P1=[0.251 0.503 0.952 1.335
0.724 0.692 0.584 0.448
2.002 1.964 1.812 1.613
1.735 1.684 1.513 1.289
3.287 3.225 3.025 2.746
0.243 0. ...


结果是不是这样?
   NaN   NaN   NaN   NaN
   NaN   NaN   NaN   NaN
   NaN   NaN   NaN   NaN
 楼主| 发表于 2008-5-5 17:42 | 显示全部楼层
不好意思,下次一定注意,
错误是那样
发表于 2008-5-5 18:30 | 显示全部楼层

回复 4楼 的帖子

建议一行一行调试
发表于 2009-7-18 16:03 | 显示全部楼层
权值和阈值都有问题,迭代的时候调整权值阈值,按你的这个网络是调整最后一次输出得到
0 1 0 1时的权值和阈值,也就是说即使这个网络是对的,也会出现不管你输入什么,输出都是0 1 0 1
您需要登录后才可以回帖 登录 | 我要加入

本版积分规则

QQ|小黑屋|Archiver|手机版|联系我们|声振论坛

GMT+8, 2025-1-8 06:18 , Processed in 0.066223 second(s), 18 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表