声振论坛

 找回密码
 我要加入

QQ登录

只需一步,快速开始

查看: 16903|回复: 51

[动力学和稳定性] 石川法求齿轮啮合刚度(仅供参考)

  [复制链接]
发表于 2010-10-18 16:12 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?我要加入

x
clear;
z1=45;z2=90;%两齿轮的齿数
m=3;
b=m*8;
ha=m;
c=0.25*m;
d1=m*z1;d2=m*z2;
r1=m*z1/2;r2=m*z2/2;%分度圆半径
hf1=1.25*m;
hf2=1.25*m;
alpha=20*pi/180;%分度圆压力角
invalpha=tan(alpha)-alpha;
db1=d1*cos(alpha);
db2=d2*cos(alpha);
rb1=db1/2;
rb2=db2/2;%基圆半径
rf1=r1-hf1;
rf2=r2-hf2;%齿根圆半径
da1=d1+2*ha;
da2=d2+2*ha;
ra1=da1/2;
ra2=da2/2;%齿顶圆半径
alpha_a1=acos(rb1/ra1);
alpha_a2=acos(rb2/ra2);%齿顶圆压力角
alpha_f1=acos(rb1/rf1);
alpha_f2=acos(rb2/rf2);%齿根圆压力角
s=pi*m/2;%分度圆弧齿厚
e=s;%分度圆齿槽宽
sk1=ra1*(s/r1+2*((tan(alpha)-alpha)-(tan(alpha_a1)-alpha_a1)));
sk2=ra2*(s/r2+2*((tan(alpha)-alpha)-(tan(alpha_a2)-alpha_a2)));%齿顶圆齿厚
PB1=r1*cos(alpha)*(tan(alpha_a1)-tan(alpha));
PB2=r2*cos(alpha)*(tan(alpha_a2)-tan(alpha));
B1B2=PB1+PB2;
Pb=pi*m*cos(alpha);%基圆齿距
Epsilona=B1B2/Pb;
N1B1=sqrt(ra1^2-rb1^2);
N1B2=N1B1-B1B2;
N2B2=sqrt(ra2^2-rb2^2);
N2B1=N2B2-B1B2;
rF2=sqrt(rb2^2+N2B1^2);
rF1=sqrt(rb1^2+N1B2^2);%有效齿根圆半径
alpha_F1=acos(rb1/rF1);
alpha_F2=acos(rb2/rF2);
sf1=2*rF1*sin(pi/2/z1+invalpha-tan(alpha_F1)+alpha_F1);
sf2=2*rF2*sin(pi/2/z2+invalpha-tan(alpha_F2)+alpha_F2);
h1=sqrt(ra1^2-(sk1/2)^2)-sqrt(rf1^2-(sf1/2)^2);
h2=sqrt(ra2^2-(sk2/2)^2)-sqrt(rf2^2-(sf2/2)^2);
hr1=sqrt(rF1^2-(sf1/2)^2)-sqrt(rf1^2-(sf1/2)^2);
hr2=sqrt(rF2^2-(sf2/2)^2)-sqrt(rf2^2-(sf2/2)^2);
hi1=(h1*sf1-hr1*sk1)/(sf1-sk1);
hi2=(h2*sf2-hr2*sk2)/(sf2-sk2);
N2C=N2B1+Pb;
B2C=B1B2-Pb;%双齿啮合区
CD=Pb-B2C;%单齿啮合区
N1C=N1B1-Pb;
Fn=1000;%外力
E=2e+008;%弹性模量
v=0.26;%泊松比
n=100;
step=B2C/n;%B2C为双齿啮合区
nz1=3000;%齿轮1转速r/min
Tz=60/z1/nz1;%循环的周期
t1=B2C/Pb*Tz;
t2=CD/Pb*Tz;
step2=t1/n;
step4=t2/n;
%双齿啮合区设一啮合为i点,一啮合点为j点。
for i=1:n
    x(i)=i*step;
    tt(i)=i*step2;
    xx(i)=Pb+i*step;
    N1Bi(i)=N1B2+i*step;%双齿啮合区i啮合点公式中具体参数的计算
    O1Bi(i)=sqrt(N1Bi(i)*N1Bi(i)+rb1^2);
    ai1(i)=acos(rb1/O1Bi(i));
    gamai1(i)=pi/2/z1+invalpha-tan(ai1(i))+ai1(i);
    miui1(i)=ai1(i)-gamai1(i);
    rxi1(i)=O1Bi(i);
    hxi1(i)=rxi1(i)*cos(gamai1(i))-sqrt(rf1^2-(sf1/2)^2);
    N2Bi(i)=N2B2-i*step;
    O2Bi(i)=sqrt(N2Bi(i)^2+rb2^2);
    ai2(i)=acos(rb2/O2Bi(i));
    gamai2(i)=pi/2/z2+invalpha-tan(ai2(i))+ai2(i);
    miui2(i)=ai2(i)-gamai2(i);
    rxi2(i)=O2Bi(i);
    hxi2(i)=rxi2(i)*cos(gamai2(i))-sqrt(rf2^2-(sf2/2)^2);
    N1Bj(i)=N1Bi(i)+Pb;%双齿啮合区j啮合点公式中具体参数的计算
    O1Bj(i)=sqrt(N1Bj(i)^2+rb1^2);
    aj1(i)=acos(rb1/O1Bj(i));
    gamaj1(i)=pi/2/z1+tan(alpha)-alpha-tan(aj1(i))+aj1(i);
    miuj1(i)=aj1(i)-gamaj1(i);
    rxj1(i)=O1Bj(i);
    hxj1(i)=rxj1(i)*cos(gamaj1(i))-sqrt(rf1^2-(sf1/2)^2);
    N2Bj(i)=N2Bi(i)-Pb;
    O2Bj(i)=sqrt(N2Bj(i)^2+rb2^2);
    aj2(i)=acos(rb2/O2Bj(i));
    gamaj2(i)=pi/2/z2+tan(alpha)-alpha-tan(aj2(i))+aj2(i);
    miuj2(i)=aj2(i)-gamaj2(i);
    rxj2(i)=O2Bj(i);
    hxj2(i)=rxj2(i)*cos(gamaj2(i))-sqrt(rf2^2-(sf2/2)^2);
    sigmabri1(i)=12*Fn*cos(miui1(i))^2*(hxi1(i)*hr1*(hxi1(i)-hr1)+hxi1(i)^3/3)/b/E/sf1^3;
    sigmabri2(i)=12*Fn*cos(miui2(i))^2*(hxi2(i)*hr2*(hxi2(i)-hr2)+hxi2(i)^3/3)/b/E/sf2^3;
    sigmabti1(i)=6*Fn*cos(miui1(i))^2*((hi1-hxi1(i))/(hi1-hr1)*(4-(hi1-hxi1(i))/(hi1-hr1))-2*log((hi1-hxi1(i))/(hi1-hr1))-3)*(hi1-hr1)^3/b/E/sf1^3;
    sigmabti2(i)=6*Fn*cos(miui2(i))^2*((hi2-hxi2(i))/(hi2-hr2)*(4-(hi2-hxi2(i))/(hi2-hr2))-2*log((hi2-hxi2(i))/(hi2-hr2))-3)*(hi2-hr2)^3/b/E/sf2^3;
    sigmasi1(i)=2*(1+v)*Fn*cos(miui1(i))^2*(hr1+(hi1-hr1)*log((hi1-hr1)/(hi1-hxi1(i))))/b/E/sf1;
    sigmasi2(i)=2*(1+v)*Fn*cos(miui2(i))^2*(hr2+(hi2-hr2)*log((hi2-hr2)/(hi2-hxi2(i))))/b/E/sf2;
    sigmagi1(i)=24*Fn*hxi1(i)*cos(miui1(i))^2/pi/b/E/sf1^2;
    sigmagi2(i)=24*Fn*hxi2(i)*cos(miui2(i))^2/pi/b/E/sf2^2;
    sigmap=4*Fn*(1-v^2)/pi/b/E;
    sigmabrj1(i)=12*Fn*cos(miuj1(i))^2*(hxj1(i)*hr1*(hxj1(i)-hr1)+hxj1(i)^3/3)/b/E/sf1^3;
    sigmabrj2(i)=12*Fn*cos(miuj2(i))^2*(hxj2(i)*hr2*(hxj2(i)-hr2)+hxj2(i)^3/3)/b/E/sf2^3;
    sigmabtj1(i)=6*Fn*cos(miuj1(i))^2*((hi1-hxj1(i))/(hi1-hr1)*(4-(hi1-hxj1(i))/(hi1-hr1))-2*log((hi1-hxj1(i))/(hi1-hr1))-3)*(hi1-hr1)^3/b/E/sf1^3;
    sigmabtj2(i)=6*Fn*cos(miuj2(i))^2*((hi2-hxj2(i))/(hi2-hr2)*(4-(hi2-hxj2(i))/(hi2-hr2))-2*log((hi2-hxj2(i))/(hi2-hr2))-3)*(hi2-hr2)^3/b/E/sf2^3;
    sigmasj1(i)=2*(1+v)*Fn*cos(miuj1(i))^2*(hr1+(hi1-hr1)*log((hi1-hr1)/(hi1-hxj1(i))))/b/E/sf1;
    sigmasj2(i)=2*(1+v)*Fn*cos(miuj2(i))^2*(hr2+(hi2-hr2)*log((hi2-hr2)/(hi2-hxj2(i))))/b/E/sf2;
    sigmagj1(i)=24*Fn*hxj1(i)*cos(miuj1(i))^2/pi/b/E/sf1^2;
    sigmagj2(i)=24*Fn*hxj2(i)*cos(miuj2(i))^2/pi/b/E/sf2^2;
    ki1(i)=Fn/(sigmabri1(i)+sigmabri2(i)+sigmabti1(i)+sigmabti2(i)+sigmasi1(i)+sigmasi2(i)+sigmagi1(i)+sigmagi2(i)+sigmap);%双齿啮合时i点刚度
    kj(i)=Fn/(sigmabrj1(i)+sigmabrj2(i)+sigmabtj1(i)+sigmabtj2(i)+sigmasj1(i)+sigmasj2(i)+sigmagj1(i)+sigmagj2(i)+sigmap);%双齿啮合时j点刚度
    k(i)=ki1(i)+kj(i);
end
step3=CD/n;%CD为单齿啮合区
for i=1:n
    xxx(i)=B2C+i*step3;
    ttt(i)=t1+i*step4;
    N1Bi(i)=N1C+i*step3;
    O1Bi(i)=sqrt(N1Bi(i)^2+rb1^2);
    ai1(i)=acos(rb1/O1Bi(i));
    gamai1(i)=pi/2/z1+invalpha-tan(ai1(i))+ai1(i);
    miui1(i)=ai1(i)-gamai1(i);
    rxi1(i)=O1Bi(i);
    hxi1(i)=rxi1(i)*cos(gamai1(i))-sqrt(rf1^2-(sf1/2)^2);
    N2Bi(i)=N2C-i*step3;
    O2Bi(i)=sqrt(N2Bi(i)^2+rb2^2);
    ai2(i)=acos(rb2/O2Bi(i));
    gamai2(i)=pi/2/z2+invalpha-tan(ai2(i))+ai2(i);
    miui2(i)=ai2(i)-gamai2(i);
    rxi2(i)=O2Bi(i);
    hxi2(i)=rxi2(i)*cos(gamai2(i))-sqrt(rf2^2-(sf2/2)^2);
    sigmabri1(i)=12*Fn*cos(miui1(i))^2*(hxi1(i)*hr1*(hxi1(i)-hr1)+hxi1(i)^3/3)/b/E/sf1^3;
    sigmabri2(i)=12*Fn*cos(miui2(i))^2*(hxi2(i)*hr2*(hxi2(i)-hr2)+hxi2(i)^3/3)/b/E/sf2^3;
    sigmabti1(i)=6*Fn*cos(miui1(i))^2*((hi1-hxi1(i))/(hi1-hr1)*(4-(hi1-hxi1(i))/(hi1-hr1))-2*log((hi1-hxi1(i))/(hi1-hr1))-3)*(hi1-hr1)^3/b/E/sf1^3;
    sigmabti2(i)=6*Fn*cos(miui2(i))^2*((hi2-hxi2(i))/(hi2-hr2)*(4-(hi2-hxi2(i))/(hi2-hr2))-2*log((hi2-hxi2(i))/(hi2-hr2))-3)*(hi2-hr2)^3/b/E/sf2^3;
    sigmasi1(i)=2*(1+v)*Fn*cos(miui1(i))^2*(hr1+(hi1-hr1)*log((hi1-hr1)/(hi1-hxi1(i))))/b/E/sf1;
    sigmasi2(i)=2*(1+v)*Fn*cos(miui2(i))^2*(hr2+(hi2-hr2)*log((hi2-hr2)/(hi2-hxi2(i))))/b/E/sf2;
    sigmagi1(i)=24*Fn*hxi1(i)*cos(miui1(i))^2/pi/b/E/sf1^2;
    sigmagi2(i)=24*Fn*hxi2(i)*cos(miui2(i))^2/pi/b/E/sf2^2;
    sigmap=4*Fn*(1-v^2)/pi/b/E;
    ki2(i)=Fn/(sigmabri1(i)+sigmabri2(i)+sigmabti1(i)+sigmabti2(i)+sigmasi1(i)+sigmasi2(i)+sigmagi1(i)+sigmagi2(i)+sigmap);
end
o1=polyfit(tt,k,3);
o2=polyfit(ttt,ki2,3);
o3=polyfit(tt,ki1,3);
o4=polyfit(tt,kj,3);
subplot(2,2,1),plot(x,k),hold on,plot(xxx,ki2),xlabel('啮合线位移/(mm)'),ylabel('线性啮合刚度k')
subplot(2,2,2),plot(tt,k),hold on,plot(ttt,ki2),xlabel('啮合时间/(s)'),ylabel('线性啮合刚度k')
subplot(2,2,3),plot(x,ki1),hold on,plot(x,kj),figure
plot(x,k),hold on,plot(xxx,ki2),xlabel('啮合线位移/(mm)'),ylabel('线性啮合刚度k')

点评

赞成: 5.0
赞成: 5
  发表于 2014-3-27 18:11

评分

2

查看全部评分

本帖被以下淘专辑推荐:

回复
分享到:

使用道具 举报

发表于 2010-10-19 07:47 | 显示全部楼层
谢谢楼主分享!!!!!!
 楼主| 发表于 2010-10-22 09:53 | 显示全部楼层
忘了说一件事,弹性模量E本来该取E=2e+011,由于齿轮的变形是以mm为单位,所以数量级做了调整,最后求得的刚度单位是N/m,不是N/mm

点评

感谢说得这么仔细,要是把理论公式附上就更好了。  发表于 2015-11-21 21:40

评分

1

查看全部评分

发表于 2010-10-23 19:42 | 显示全部楼层
谢谢,楼主分享,正研究这个呢?学习了
发表于 2010-11-23 21:21 | 显示全部楼层
不错,赞一下搂主。
发表于 2011-1-5 17:07 | 显示全部楼层
LZ可否给一份石川法的文字资料.
xiaoke24@yahoo.com.cn
Q:20026347
thx~
发表于 2011-1-6 10:29 | 显示全部楼层
sf1=2*rF1*sin(pi/2/z1+invalpha-tan(alpha_F1)+alpha_F1);
sf2=2*rF2*sin(pi/2/z2+invalpha-tan(alpha_F2)+alpha_F2);
发表于 2011-1-6 10:29 | 显示全部楼层
什么意思啊???
sf1=2*rF1*sin(pi/2/z1+invalpha-tan(alpha_F1)+alpha_F1);
sf2=2*rF2*sin(pi/2/z2+invalpha-tan(alpha_F2)+alpha_F2);
 楼主| 发表于 2011-3-3 22:04 | 显示全部楼层
回复 8 # 569340337 的帖子

朱秋玲的《齿轮系统动力学分析及计算机仿真》里有公式说明。
顺便说一下公式里的b是齿宽,我取错了,齿宽应该为b=d1(轮1分度圆直径)*齿宽系数(取0.4~0.9)。
程序编的匆忙,大家仅作参考

评分

1

查看全部评分

发表于 2011-5-19 12:23 | 显示全部楼层
你这个是什么程序?
发表于 2011-7-11 15:35 | 显示全部楼层
斜齿轮怎么考虑
发表于 2011-8-6 16:00 | 显示全部楼层
谢谢楼主分享
发表于 2011-8-22 22:18 | 显示全部楼层
请问楼主,是否在计算双齿啮合区时有误?我认为你少计算了一半
发表于 2011-10-5 15:48 | 显示全部楼层
太感动了 现在正在学这个呢  不知道这位高手有没有解齿轮系统的方程的程序啊??
 楼主| 发表于 2011-10-26 13:34 | 显示全部楼层
回复 13 # nrg 的帖子

双齿啮合区有两个啮合点,我分别设为i点,j点,两点都计算了
您需要登录后才可以回帖 登录 | 我要加入

本版积分规则

QQ|小黑屋|Archiver|手机版|联系我们|声振论坛

GMT+8, 2024-12-23 16:57 , Processed in 0.070254 second(s), 23 queries , Gzip On.

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表