对于圆轴扭转问题,可以认为法国科学家库仑(Coulomb C A de)分别于1777年和1784年发表的两篇论文是具有开创意义的工作。其后英国科学家杨(Young T)在1807年得到了横截面上切应力与到轴心距离成正比的正确结论。此后,法国力学家圣维南(Saint-Venant B de)于19世纪中叶运用弹性力学方法奠定了柱体扭转理论研究的基础,因而学术界习惯将柱体扭转问题称为圣维南问题。闭口薄壁杆件的切应力公式是布莱特(Bredt R)于1896年得到的;而铁摩辛柯(Timoshenko S P,1922)、符拉索夫(ВласовВЗ,1939)和乌曼斯基(Уманский А А,1940)则对求解开口薄壁杆件扭转问题做出了杰出的贡献。
4 关于压杆稳定问题
压杆在工程实际中到处可见,第11章已经述及压杆的失稳现象。早在文艺复兴时期,伟大的艺术家、科学家和工程师达·芬奇对压杆做了一些开拓性的研究工作。荷兰物理学教授穆申布罗克(Musschenbroek P van)于1729年通过对于木杆的受压实验,得出“压曲载荷与杆长的平方成反比的重要结论”。众所周知,细长杆压曲载荷公式是数学家欧拉首先导出的。他在1744年出版的变分法专著中,曾得到细长压杆失稳后弹性曲线的精确描述及压曲载荷的计算公式。1757年他又出版了《关于柱的承载能力》的论著(工程中习惯将压杆称为柱),纠正了在1744年专著中关于矩形截面抗弯刚度计算中的错误。而大家熟知的两端铰支压杆压曲载荷公式是拉格朗日(Lagrange J L)在欧拉近似微分方程的基础上于1770年左右得到的。1807年英国自然哲学教授杨(Young T)、1826年纳维先后指出欧拉公式只适用于细长压杆。1846年拉马尔(Lamarle E)具体讨论了欧拉公式的适用范围,并提出超出此范围的压杆要依靠实验研究方可解决问题的正确见解。关于大家熟知的非细长杆压曲载荷经验公式的提出者,则众说纷云,难于考证。一种说法是瑞士的台特迈尔(Tetmajer L)和俄罗斯的雅辛斯基(Ясинский Φ С)都曾提出过有关压杆临界力与柔度关系的经验公式,雅辛斯基还用过许可应力折减系数计算稳定许可应力。